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Abstract

Perishable goods, such as tickets, are often resold on different platforms
by various dynamic selling mechanisms. These platforms are different from
each other in many other dimensions, such as search algorithms, market
thickness and commission fees. This paper analyzes participants’ behav-
ior on eBay’s baseball ticket resale market and focus on the question that
how characteristics of a platform would affect sellers’ dynamic mechanism
choices. By modeling and structurally estimating buyers’ two-stage decision
process, I find that buyers are sensitive to price but the sensitivity has mod-
erate magnitude. Given the demand estimation, the dynamics of a seller’s
mechanism choice and pricing strategy can be captured by a dynamic model
with an outside option in the end. Counterfactual analysis suggests that
when sellers are more patient about future sales, they have less incentive to
use auctions. When a platform’s search algorithm is more related to prices,
or when there are more competitive listings available in the market, aver-
age auction share and average market price would decrease. The average
expected profits of sellers are also reduced. Besides, the average auction
share would not change significantly when increasing the commission fees
from sellers. Finally, if sellers are only allowed to use posted prices, both
average market prices and sellers’ average profits will decrease if buyers’
arrival process is the same.
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1 Introduction
The lower cost of changing prices on internet allows platforms to set more flexible
and various selling mechanisms to facilitate trading. Perishable goods, such as sports
tickets, are often resold online by various dynamic selling mechanisms. Different
platforms prefer offering different menus of selling mechanisms. For example, eBay
allows sellers to sell their goods by sequential auctions or dynamic posted prices.

While a batch of literature (Hammond (2013)[19], Hummel (2015)[23] and Wais-
man (2017)[31]) using eBay’s data shows that the multiple mechanisms will benefit
sellers, buyers or the platform, in real life, some big ticket resale platforms, such as
Stubhub, work well with only dynamic posted prices. These platforms are different
from each other in many dimensions other than selling mechanisms. Some important
questions to ask are how sellers decide their pricing strategies and selling mechanism
choices in the dynamic setting and whether they will be affected by other charac-
teristics of a platform. This paper tries to disentangle these questions by assessing
participants’ behavior on eBay’s ticket resale market.

According to the existing literature and empirical applications, the reasons why
participants choose auctions usually follow three arguments. 1) Competitive price
discovery: sellers are uncertain about buyers’ valuation. 2) Buyers’ or sellers’ hetero-
geneity: for example, buyers who have low valuation and high patience level or risk
tolerance are more likely to choose auctions. 3) Easy to sell: auctions always have
higher sales rates than posted prices. In a dynamic market, some of these advantages
can be achieved to some extent by dynamic posted prices only. For example, even
sellers cannot sell their goods in the current period, they are able to sell them later.
This continuation value lowers the sellers’ incentive to sell their goods in the cur-
rent period. On the other hand, it is not always costless to use auctions along with
dynamic posted prices. Even homogeneous goods can be differentiated by different
selling mechanisms, which will decrease the price competition among sellers. If the
reduction of competition is big, it may result in higher market prices even though
auctions always have lower transaction prices than posted prices. This may make the
platform less attractive to buyers in long run.

Participants’ selling mechanism choices may be affected by other characteristics of
a platform. Consider eBay for example, as an online platform with various goods to
sell, the amount of tickets available to resale on eBay is not large. On eBay, sellers
have more freedom regarding the ways to list their goods, such as using different
forms of their titles and different shipment fees. Since there is no strict policy could
guarantee buyers the tickets they want, the reputation (to be specific, the feedback
score) will affect sales. Also, the default search algorithm on eBay is Best Match
(Dinerstein(2014))[14] which is less related to prices. All of these will make buyers’
choices among listings less sensitive to price, leading to less price competition among
sellers. Further, this will affect sellers’ mechanism choices. To be specific, let’s con-
sider one example. Since sellers with higher quality goods usually set higher prices,
they can attract more buyers when buyers pay less attention to prices. Because the
profit of an auction increases significantly with one additional bidder as long as the
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total number of bidders in the auction is moderate, the relative profits from auctions
to posted prices is higher for these sellers when buyers are less price sensitive. In
the model part, I will use some specific simulations to show how the relative profits
from posted prices to auctions varies when some interesting parameters of the model
change.

In this paper, I give a comprehensive empirical model to describe buyers’ and
sellers’ behavior. On the demand side, I divide a buyer’s problem into two stages. In
the first stage, a buyer chooses a listing to enter within her consideration set according
to her knowledge of prices, non-ticket information and noisy information about the
tickets. In the second stage, based on more specific information about the tickets, she
decides whether to buy the ticket and how much to bid if it is an auction. To simplify
the problem, I assume that buyers are myopic and their arrival rate to a specific
game’s listings in one period of one selling mechanism is determined by the game’s
characteristics and the time left to the game. On the supply side, sellers are forward-
looking. In each period, a seller makes decisions about which selling mechanism
to use and how much price to set based upon a dynamic model and his knowledge
of demand. Combining these two sides, I am able to figure out the conditions for
equilibrium prices and the probability of choosing each selling mechanism.

To get some evidence from real markets, I use Chicago Cubs 2015 MLB season
single home game tickets data from eBay. After doing some simple reduced form
analysis, I structurally estimate the parameters in my model. To be specific, on the
demand side, I use two-step method—uncover the distribution of willingness-to-pay
first using observed two highest bids and then solve for the arrival process/entry prob-
lem using sales data. To overcome the sample selection bias caused by the incomplete
data and the endogeneous price resulting from unobservables, I use a two-step method
and instruments respectively in the estimation part. Given the estimated parame-
ters on the demand side, I estimate outside options on the supply side by solving a
dynamic game for the inner loop and using GMM estimation for the outer loop. Con-
sidering the difficulty to solve a dynamic competition game with selling mechanism
choice, in the empirical part, I assume sellers are perfect foresight and the observed
market strategies are the results of the dynamic model. Therefore, instead of solving
the dynamic game for all the sellers simultaneously by backward induction, I plug
the observed market information about a seller’s opponents into his best response
function directly. Therefore, the problem is like a partial single-agent problem which
can capture the price competition to some extent

The estimation results show that both ticket and non-ticket characteristics will
affect buyers’ arrival rates to listings. The coefficient of price is significantly negative
but with small magnitude. The parameters in the entry model for auctions and posted
prices have different estimated values. The arrival rates to posted prices are always
higher than the arrival rates to auctions given the assumption that value distribution
is the same across different mechanisms. On the supply side, the results indicate that
when sellers make decisions, they also consider outside options in the end besides
continuation value from the dynamic model. The estimation results can predict well
the market aggregate observables, such as dynamics of auction share, equilibrium
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start price level and its dynamics across time.
In light of the counterfactual analysis of this paper, I first consider how the par-

ticipants’ preferences, such as their patience about future, will affect their selling
mechanism choice. The results show that when sellers are more patient, they have
less incentive to use auctions. Then I focus on how the changes of market charac-
teristics, like the search algorithm, availability of listings and commission fees, will
affect the seller’s mechanism choice and the equilibrium prices. By transforming the
changes of market characteristics to the changes of price sensitivity and constant in
the arrival process, I show that when the search algorithm is more related to prices or
when there are more listings available in the market, average auction share and price
will decrease. What’s more, the equilibrium prices will be less dispersed. Finally,
by eliminating auctions from the mechanism menu, I quantify how the market prices
would change when sellers are only allowed to use posted prices. The decrease of
prices in this scenario can be explained by the lower continuation values of sellers
who prefer using auctions. Besides, sellers’ expected profits will decrease if we keep
other things the same. However, this result may be reversed if the lower market prices
can attract more buyers from other platforms in long run.

Although the literature about selling mechanism choice, dynamic pricing or se-
quential auctions is not rare, only Waisman (2017) structurally models and estimates
the dynamic pricing and selling mechanism choice problem for perishable goods as
far as I know. That paper, however, doesn’t explicitly model buyers’ entry prob-
lem to listings, especially, it doesn’t consider how buyers are sensitive to price when
they make their entry decisions. Besides, that paper treats each seller’s decision as
a single-agent problem and doesn’t take the price competition into account, which is
different from my paper. In the empirical part, to capture more market information,
I also try to rationalize both observed market prices and mechanism choices rather
than mechanism choices only. Finally, this paper also more focuses on how charac-
teristics of a platform will change the mechanism choices and market prices. These
new things mentioned in the paper will not only contribute to the existing literature
but also give some implication for better platform design in practice.

Road Map

The rest of the paper is organized as follows. Section 2 briefly reviews the literature
related to this paper. In section 3, I introduce the online tickets resale market and
specifically describe how the search pages look like on different platforms. Also, I give
a summary statistics of the data I use in the empirical part. Section 4 is the model
part for both buyers and sellers. I give some simple simulations after constructing
the general model. Section 5 describes the identification strategy and estimation
procedure of the paper. In section 6, after some reduced form analysis, I show the
structural estimation results of the paper. Given the estimation results, section 7 lists
some counterfactual scenarios for analysis. Section 8 concludes. Finally, in Appendix
C, I depict another model which has different assumptions about the sellers’ arrival
process. I do one-step estimation and counterfactual analysis using a subsample of
the data.
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2 Literature Review

Literature related to this paper mainly includes three branches: mechanism choice,
dynamic pricing and sequential auctions, search and online platform. I briefly sum-
marize the related literature in each area here.

2.1 Mechanism Choice

The trade-off between auctions and posted prices has been studied in some theoretical
models. Wang (1993)[32] presents a model to analyze the choice between auctions
and fixed posted-price selling. He proves that a uniformly steeper marginal-revenue
curve favors auctions. The global steepness of the marginal-revenue curve is the same
to the dispersion around mean for a number of standard distributions. Caldentey
and Vulcanowe (2007)[9] analyze a single-period model in which a seller operates a
multi-unit, uniform price, online auction, offering multiple units of a homogeneous
good. Consumers can get the product from an alternative list price channel. They
consider two variants of this problem: In the first variant, the list price is an external
channel run by another firm. In the second one, the seller manages both the auction
and the list price channels. Ziegler and Lazear (2003)[35] model the auction cost
as impatience and found that posted prices will be chosen if the seller is sufficiently
impatient because they yield immediate transactions, while auctions have to last for
a amount of time regardless of whether a willing buyer arrives.

Recently, the arise of online markets provides more opportunities for sellers to
use various selling mechanisms with low transaction costs and for researchers to get
more available data. Waisman (2017)[31] analyzes the choices of sellers between
auctions and posted prices using NFL tickets. He finds that sellers benefit from
the availability of different mechanisms. Einav et al.(2016)[15] models the choice
between auctions and posted price as a trade-off between competitive price discovery
and convenience. Hammond (2013)[19] shows that differences across sellers’ outside
options are important: the value of the outside option segments the market with high
outside-option sellers choosing to post a fixed price. Hummel (2015)[23] constructs a
model that several identical goods are sold simultaneously via an auction and posted
price mechanism. He shows that bidders incline to bid more frequently near the end
of the auction and sellers prefer to simultaneously using auctions and posted prices.
Zeithammer and Liu (2006)[34] empirically test several possible explanations of the
coexistence of various selling mechanisms for selling the same good. Their empirical
test shows that both observed and unobserved seller heterogeneity are important for
seller’s mechanism-choice. Chen et al.(2017)[10] investigate sellers’ choices among
fixed-price posting, buy-it-now auction and regular auction. Coey et al.(2016)[12]
model buyers in the markets as having a deadline by which the good have to be
purchased and model sellers’ choice between auctions and posted price mechanisms
in continuous time. They find that as the deadline approaches, buyers tend to bid
higher and are more likely to buy through posted-price listings. Their empirical work
uses listings of new-in-box items on eBay to support their model.
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Some papers focus the introduction of Buy-it-now option to auctions. Budish
and Takeyama (2001)[8] show that introduce an English auction with a buy-it-now
option can improve the seller’s profits by attracting some risk-averse bidders. Bauner
(2011)[3] studies the effect of BIN option in auctions for eBay sales of Major League
Baseball tickets. He models the choices on both sides. On the demand side, buyers’
choice among available listings; on the supply side, sellers make equilibrium decisions
when choosing sales mechanisms and prices. Anwar and Zheng (2015)[1] show that
with the buy-it-now option, some high valuation buyers buy the item before the
auction starts. When there is a single seller with many items for sale, this will increase
allocative efficiency and increases the seller’s expected revenue. When there are many
competing sellers, if sellers choose between the strategies of auction and buy-it-now
auctions, the buy-it-now auctions will be adopted with positive probability in all
equilibria.

2.2 Dynamic Pricing and Sequential Auctions

Sweeting (2012)[30] models and estimates sellers’ dynamic pricing strategies for per-
ishable goods using eBay sales of baseball tickets. The analysis focus on the posted
price mechanism. It shows that some of the simplest dynamic pricing model can
describe seller behavior very accurately. Dynamic posted prices Deneckere and Peck
(2012)[13] studies a dynamic model of perfectly competitive price posting under un-
certain demand. After produce in advance, firms set prices for their rest output. In
each period, on the demand side, a batch of consumers is randomly activated. Exist-
ing customers decide to purchase at the lowest available price or delay their purchase
after observing the posted prices. They describe a sequential equilibrium where the
output is produced and its allocation is efficient. Their model can depict the price
pattern for airline tickets.

Jofre-Bonet and Pesendorfer (2003)[24] firstly attack estimation in a dynamic auc-
tion game. Subsequent to this, a number of papers have looked at this dynamics.
Zeithammer and Adams (2010)[33] develop a model with forward-looking bidders,
and showed both theoretically and empirically that bidders shade down current bids
in response to the presence of upcoming auctions of similar objects. Budish (2008)[7]
examines the optimality of eBay’s market design with respect to the sequencing of
sales and information revelation. Backus and Lewis (2012)[2] provide a framework for
estimating demand in a large auction market with a dynamic population of buyers
with unit demand and heterogeneous preferences over a unite set of differentiated
products. Hendricks and Sorensen (2014) offer a model, similar to Backus and Lewis
(2012)[2] but in continuous time and with a single product type, and analyze the effi-
ciency of the eBay trading mechanism.These two papers focus on the buyer’s decision
and don’t consider the seller’s pricing decision. Bodoh-Creed et.al (2016)[6] provides
a model of decentralized auction platform like eBay and accounts for the endogenous
entry of agents and the impact of intertemporal optimization on bids. They estimate
the structural primitives of their model using Kindle sales on eBay. They find that
over one third of Kindle auctions on eBay result in an inefficient allocation and par-
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tial centralization would eliminate a large fraction of the inefficiency, but yield lower
seller revenues.

2.3 Search and Online Platform

Goldfarb and Tucker (2017)[18] summarize the five distinct economic costs associate
with the digital economy: search cost, reputation costs, transportation costs, tracking
costs and verification costs. Dinerstein et al.(2014) [14] studies a key trade-off associ-
ated with two important roles of efficient platform search algorithm design in guiding
consumers to their most desired product while also strengthening seller incentives to
provide low prices. They combine detailed browsing data from eBay and an equi-
librium model of consumer search and price competition to quantitatively assess the
trade-off related to a change in eBay’s search algorithm design. Ellison and Ellison
(2009) [16] show that retailers may engage in obfuscation—practices that frustrate
consumer search or make it less damaging to firms which results in much less price
sensitivity on some other products. Blake et al.(2016) [5] collect a dataset of search
and purchase behavior from eBay to quantify the implied costs of consumer search
on the internet. Hortaçsu and Syverson (2004)[22] investigate the role that nonport-
folio fund differentiation and information search frictions play in explaining the large
number of funds and the sizable dispersion in fund fees.

Several papers combine the tickets primary market with the secondary market.
Leslie and Sorensen (2013)[25] estimate an equilibrium model of ticket resale in which
consumers and brokers make decisions in the the primary market based on rational
expectations about the resale market. They show which the presence of a resale
market permits tickets to be traded from low-value to high-value consumers, it also
encourages costly efforts by consumers and brokers to obtain underpriced tickets
in the primary market. Bhave and Budish (2014) [4] studies the introduction of
a novel variant of position auctions into this market by Ticketmaster. Combining
with secondary-market resale data on eBay, they show that the auctions on average
eliminated the arbitrage profits associated with underpriced tickets.

3 Data and Market

3.1 Tickets resale market

The data used in this paper is Chicago Cubs 2015 MLB regular season single home
game tickets from eBay. After the teams sell their tickets in the primary market
(e.g. via Ticketmaster in 2015), some of these tickets are resold on in the secondary
market. Sellers in the secondary market include brokers and fans who cannot attend
the games.

Tickets can be resold in secondary market via different sources. Most of them
are sold on some platforms which are specialized in selling tickets, such as Stubhub.
Relative small amount of tickets are resold on ebay which sells a wide variety of goods.
There are many differences between these two types of platforms. On Stubhub, sellers
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are only allowed to list their tickets by posted prices. When buyers search Chicago
cubs’s tickets on Stubhub, they will see all available games in this season are listed
according to the event time. Some preliminary information is given on the first page,
such as the lowest price of the tickets for each game. When they enter the second page
after clicking one game, buyers can observe the section, row and price information
for each listing. The default ranking algorithm is from lowest price to highest price.
Buyers cannot observe any information about the sellers. Stubhub offer a guarantee
that buyers can receive the tickets they want, so the reputation of sellers is not
important here. Also, since most of the tickets are electronic tickets, no shipping fee
is needed. Stubhub charges average commission fees of 25% over transaction prices
(15% from sellers and 10% from buyers). See Figure A4 and A5.

Unlike Stubhub, on eBay, sellers can sell their tickets via different selling mecha-
nisms: auctions, hybrid auctions with a buy-it-now option, posted prices and posted
prices with an option for bargaining. The available amount of tickets sold on eBay
is relative small. When buyers search Chicago Cub’s tickets on eBay, they will find
different games’ tickets are listed according to the best match algorithm by default.
Buyers can choose to buy from auctions or posted prices using the options on the
page. Further, buyers can search tickets for a specific game (see Figure A1 and A2).
Still, the default ranking is not from lowest price to highest price. Except the row,
section and prices information about tickets, different listings also differentiated by
their shipping fees, sellers’ feedback score, listing titles and even images. Some listings
don’t list all the information such as row and section on the first page, buyers have
to enter the second page to get more information (see Figure A3). Although sellers
will be punished, for instance, getting lower feedback score, if they cannot offer the
tickets they list to the buyers, no strict policy guarantee buyers the they want in the
end. Partially because of this, eBay only collects 10% commission fee from sellers.

These differences between two platforms mentioned above give us some ideas about
how to construct the counterfactual scenarios later.

3.2 Summary Statistics

The data sample I use includes listings of 2015 Chicago cubs 102 home games listed 15
days before the event time. For each listing, I can observe the title of the listing, row
and section numbers of the tickets, event time, listing time, selling mechanism, start
prices, transaction prices, reserve prices, two highest bids for auctions, duration of
auctions, sellers’ id and first three zipcode, buyers’ id and first three zipcode, stadium
zipcode, the number of tickets listed in each listing and the number of items sold.
According to the event time, I can identify different games and opponent teams in
the games. Further, I can find the opponent teams’ performance rankings in that
season. Since it is hard to find the face value for each single game with specific seats
number, here I use the season ticket information (see Figure A6 and A7) to collect
the face value information of each ticket.

Table A1-Table A9 report the summary statistics of the characteristics. Here
weekdays is 1 if the game is on Friday and Saturday, 2 if the game is on Sunday
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and 3 otherwise. The smaller the number of opponent means the higher ranking the
opponent has in 2015 season. To simplify the problem, I treat a buy-it-now auction
as an auction unless its buy-it-now option is executed. To simplify the problem, if a
listing sells multiple tickets, I repeat the listing by the number of its tickets. By doing
this, I can ensure each listing only sell unit ticket. In other words, I will not consider
the complementarity of a ticket package. From Table A8. we see about 2/3 of the
tickets listed in posted prices and 1/3 of them are listed in auction format. Auctions
have relative higher sales rate than posted prices. Table A9 summarizes the relative
prices (start price/face value and transaction price/face value) for each mechanism.
The average relative transaction price is higher than relative start price. The relative
prices for auctions are lower than those for posted prices.

Figure 1 and 2 show how the relative start prices and transaction prices vary
across time. When it is close to the game, the relative prices decrease. Along with
the decreasing prices, the transaction rate increases dramatically along with the time
except the last two days for auctions.

Finally, Figure 3 and 4 depict how the auction share of all the listings and of trans-
action listings across time. We see, overall, the auction share decreases dramatically
when there is less than 5 days left to the event time.

According to the figures and data, I find there is only two listings of auctions being
sold in the last period. The start prices of auctions in the last period are high and the
same as ending prices except one auction listing. In the last period, since games will
begin soon, auctions are similar to posted prices. Also, in the estimation part, I find
if I include auction listings in the last period, it is hard to estimate the arrival process
of auctions given the value distribution estimated from observed bids. Therefore, I
treat the auction listings in the last period as posted price listings.
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Figure 1: Start Price/Face Value over Time

Figure 2: Transaction Price/Face Value over Time
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Figure 3: Auction Share over Time

Figure 4: Transaction Rate over Time
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4 Model

4.1 Setting

There are T periods before the game. Each seller and buyer have unit supply and
demand. In period t, the number of buyers who arrive game g and mechanism M is
NMB

gt , which follows a Poisson distribution, namely, NMB
gt ∼ Possion(λMB

gt ).

Assumption 1 The arrival rate of buyers λMB
gt follows the exponential model�

λMB
gt = exp(ρMB

0 + ρMB
1 t+ ρMB

2 X1
g );

Here X1
g contains the general information of game g, such as the opponent team’s

ranking in season 2015 and the weekdays of game g. ρMB
0 , ρMB

1 , ρMB
2 are observable

to the sellers and buyers but unobservable to researchers.
Sellers randomly arrive each game. Denote the set of listings of game g with

mechanism M in period t as GM
t .

In the Appendix C, I show a model where the arrival rate of sellers also follows a
Poisson distribution.

The platform collects commission fees from buyers and seller. The rate of com-
mission fees are τ1 and τ2 respectively.

4.2 Demand

Before entering a listing in GM
t , each buyer only has noisy information X2

j related to
the payoff from each listing. Except the game information X1

g , the noisy information
may include the section and row numbers, prices and shipping fee listing on the first
page. Buyers choose one listing to enter based on this noise information. We express
the payoffs of entering listing j∈ GM

t based on the noisy information as

V M
ijt = αM

1 pjt + αM
2 X2

j + αM
3 X1

g + ε1ijt,∀i,

where ε1ijt follows extreme type one distribution.

According to the property of Poisson-Multinomial distribution(Chen(2017)[11]), the
arrival rate for the listing j.

λMB
jt = λMB

gt

exp(αM
1 pjt + αM

2 X2
j )∑

j∈GM
t
exp(αM

1 pjt + αM
2 X2

j )
,

or

log(λMB
jt ) = ρMB

0 + ρMB
1 t+ ρMB

2 X1
g + αM

1 pjt + αM
2 xjt − log(

∑
j∈GM

t

exp(αM
1 pjt + αM

2 xj)).

To simplify the notation below, I denote all the parameters in the arrival process
model as Θ1.
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There are some points I need to mention here. First, the model implies buyers
exogenously choose among games and then endogenously choose among different list-
ings within same games. Second, in this model, αM

1 capture the price sensitivity in
a buyer’s entry problem. αM

2 can represent how the entry decision of each buyer is
related to the good’s characteristics or quality. If information of the good’s charac-
teristics is more noisy, the arrival rate may be less related with X2

j , namely, αM
2 is

smaller. According to the Poisson distribution, we have

Prob(NMB
jt = n) = Prob(Θ, pjt, X

1
j , X

2
j ) =

e−λMB
jt (λMB

jt )n

n!
.

After entering the listing, each buyer realizes her value from the good. For ∀
buyer i, her value for listing j is vij which is independently drawn from a distribution
Fv(·|X3

j ). X3
j includes the specific characteristics of the ticket, for example, ticket’s

face value, row and section numbers on the second page. I can parametrize the
distribution, for example, in the empirical part I assume log(vij) = γ1X

3
j + ζg + ε2i , ε

2
i

follows normal distribution with mean µv and standard deviation σv,ζg is the fixed
effect of the game. Denote the parameters in the value distribution as Θ2.

I assume buyers are myopic, which can be extended in the future. If ticket j is sold
by posted price, then buyer i’s expected payoff is

Vijt(Xj, pt,Θ)

=
∑
n

[
1

n
(vij − (1 + τ1)pjt)]Prob(NPB

jt = n|λPB
jt , NPB

jt ≥ 1),

where Xj = {X1
j , X

2
j , X

3
j } and θ = {θ1, θ2}.

Buyers will buy the ticket as long as vij > (1 + τ1)pjt.
If ticket j is sold by auction, then buyer i’s expected payoff is

Vijt(β1, Xj, pt,Θ)

=
∑
n

max
bijt

[

∫ B−1(bijt)

v

(β
Djt

1 vij − (1 + τ1)B(v))dF 2
V (v|Xj, n− 1)

+(β
Djt

1 (vij)−(1+τ1)rjt)F
2
V (v|Xj, n−1)]Prob(NAB

1jt∼t+D−1 = n|λAB
jt , NAB

1jt∼t+Djt−1 ≥ 1).

Here, F 2
V (v|X3

j , n) is the distribution of the second highest value among n buyers
who arrive auction j during the auction duration Djt. βDjt

1 is buyer’s discount rate of
an auction if the auction’s duration is Djt. If we simplify eBay’s auction to second
prices auctions1 , then we can solve for the buyer’s optimal bidding strategy:

(1 + τ1)bijt = β
Djt

1 vij.
1Here, I ignore the snipping problem in eBay’s auctions. Snipping in eBay’s auctions has attract a lot market

designer’s attention, such as Roth and Ockenfels (2002)[27] and Ely and Hossain (2009)[17]. Also, if we consider the
discrete bid increments in eBay’s auction, the bidders at electronic auctions tend to engage in shading instead of
revealing their valuations as in the second price auctions. See Hickman et al.(2017)[21].
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4.3 Supply

Each seller makes his decision in two stages: first, he chooses which selling mechanism
to use; secondly, he decides the price and auction duration. Since it is a finite period
problem, I use backward induction to solve his optimal decision. Here I assume sellers
are risk neutral.

4.3.1 Myopic sellers

If the seller choose a posted price, then his value function is

ΠP
jt(Xj,Θ)

= max
pPjt

E[(1− τ2)(p
P
jt − cj)Prob(v(1)n ≥ pPjt)|NPB

jt = n]× Prob(NPB
jt = n|λPB

jt ) + ϵPjt

= Π
P

jtD(Xj,Θ) + ϵPjt.

If the seller choose an auction, then his value function is

ΠA
jtD(Xj,Θ, β1)

= max
rjt

∑
nt

, ...
∑

nt+Djt−1

E[Prob(β
Djt

1 v
(1)
nt+...+nt+Djt−1

≥ rjt ≥ β
Djt

1 v
(2)
nt+...+nt+Djt−1

)(1−τ2)(rjt−cj)

+Prob(β
Djt

1 v
(2)
nt+...+nt+Djt−1

≥ rjt)

E[(1−τ2)(v
(2)
nt+...+nt+Djt−1

−cj)|β
Djt

1 v
(2)
nt+...+nt+Djt−1

≥ rjt]|NAB
jt = nt, ..., N

AB
jt+Djt−1 = nt+Djt−1]×

Prob(NAB
jt = nt, ..., N

AB
jt+Djt−1 = nt+Djt−1|λAB

jt , ..., λAB
jt+Djt−1) + ϵAjt

= max
rjt

πA
jtD(Xj,Θ) + ϵAjt

= Π
A

jtD(Xj,Θ) + ϵAjt.

Here ϵAjt is a seller-mechanism-platform-specific idiosyncratic shock which is inde-
pendent of price and cj is the cost.

Assumption 2 Sellers have perfect foresight of the market evolution process and list
auctions until they end.

According to the property of Poisson distribution, if buyers’ arrival rates to list-
ing j are {λjt, λjt−1, ..., λjt+Djt−1}, the number of buyers arrive auction j with dura-
tion D in period t, namely NAB

jt...jt−D, follows Poisson distribution with λjt...Djt−1 =∑τ=t+Djt−1
τ=t λjτ .
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Given Assumption 2, we have

ΠA
jtD(Xj,Θ, β1) = max

rjt

∑
n

E[Prob(β
Djt

1 v(1)n ≥ rjt ≥ β
Djt

1 v(2)n )(1− τ2)(rjt − cj)

+Prob(β
Djt

1 v(2)n ≥ rjt)E((1− τ2)v
(2)
n |βDjt

1 v(2)n ≥ rjt)]|NAB
jt..jt−Djt−1 = n]

×Prob(NAB
jt..jt−Djt−1 = n|λjt...Djt−1) + ϵAjt

= max
rjt

πA
jtD(Xj,Θ, β1) + ϵAjt

= Π
A

jtD(Xj,Θ, β1) + ϵAjt.

D∗
jt = argmaxDjt

ΠA
jtD(Xj,Θ, β1) ⇒ ΠA

jt(Xj,Θ, β1)

The choice of Djt is a complicated problem. On the one hand, if the auction has
longer duration, it can attract more buyers; on the other hand, buyers will discount
their bids duration is longer.

4.3.2 Forward-looking sellers

If the seller choose a posted price, then

ΠP
jt(Xj,Θ, β2)

= max
pPjt

E[(1− τ2)(p
P
jt − cj)Prob(v(1)n ≥ pPjt)

+Prob(v(1)n < pPjt)β2Πjt+1(Xj,Θ)|NPB
jt = n]× Prob(NPB

jt = n|λPB
jt ) + ϵPjt

= Π
P

jt(Xj,Θ) + ϵPjt.

If the seller choose an auction, his value function from the auction given he chooses
duration Djt is

ΠA
jtD(Xj,Θ, β1) = max

rjt

∑
n

E[Prob(β
Djt

1 v(1)n ≥ rjt ≥ β
Djt

1 v(2)n )(1− τ2)(rjt − cj)

+Prob(β
Djt

1 v(2)n ≥ rjt)E((1− τ2)v
(2)
n |βDjt

1 v(2)n ≥ rjt)]|NAB
jt..jt−Djt−1 = n]

+Prob(v(1)n < rjt)β2Πjt−D(Xj,Θ, β1, β2)|NAB
jt..jt−Djt−1 = n]×Prob(NAB

jt..jt−Djt−1 = n|λjt...Djt−1)+ϵAjt

= max
rjt

πA
jtD(Xj,Θ, β1, β2) + ϵAjt

= Π
A

jtD(Xj,Θ, β1, β2) + ϵAjt.

D∗
j = argmaxDj

ΠA
jtD(Xj,Θ, β1, β2) ⇒ ΠA

jt(Xj,Θ, β1, β2)
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Here β2 is the discount rate of the continuation value.
Outside choice

ΠO
jt = Π

O

jt + ϵOjt.

Choose mechanism has highest value.

Πjt(Xj,Θ, β1, β2) = max
M∈{A,P,O}

{ΠA
jt(Xj,Θ, β1, β2),Π

P
jt(Xj,Θ, β2)},ΠO

jt}.

Since ϵMjt follows extreme type one distribution and similar to Rust(1987)[28], I
construct ΠO

jt in the following way.

Π
O

jt =

{
β2log(exp(Π

A

jt+1(Xj,Θ)) + exp(Π
P

jt+1(Xj,Θ)) + exp(β2Π
O

jt+1(Xj,Θ))) t < T ;

β2 ∗ outsidej t = T

where outsidej = γ0
2 + γ1

2 × facevaluej. Denote γ2 = {γ0
2 , γ

1
2}.

The equilibrium prices for different selling mechanisms can be solved by the first
order conditions of expected profits.

∂ΠP
jt(Xj,Θ, β2)

∂pPjt

=
∑
n

{E[(1− τ2)Prob(v1n ≥ pPjt) + pPjt(1− τ2)
∂Prob(v

(1)
n ≥ pPjt)

∂pPjt

+β2Πjt−1(Xj,Θ)
∂Prob(v

(1)
n ≤ pPjt)

∂pPjt
|Njt = n]

×Prob(N1jt = n|λPB
jt )

+E[pPjt(1− τ2)Prob(vn ≥ pPjt)|Njt = n]
∂Prob(Njt = n|pjt, Xj,Θ)

∂pPjt
} = 0.

where

Prob(v(1)n ≥ pPjt) = (1− F (pPjt)
n)

,
∂Prob(vn ≥ pPjt)

∂pPjt
= −nF (pPjt)

n−1f(pPjt),

∂Prob(vn ≤ pPjt)

∂pPjt
= nF (pPjt)

n−1f(pPjt),

P rob(N1jt = n|pPjt, Xj,Θ) =
e−λPB

jt (λPB
jt )n

n!
,
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and

∂Prob(N1jt = n|pPjt, Xj,Θ)

∂pPjt

=
−e−λPB

jt (λPB
jt )n + ne−λPB

jt (λPB
jt )n−1

n!
λPB
jt αM

1 .

⇒ pP∗
jt (Θ)

Similarly,
∂ΠA

jtD(Xj,Θ, β1, β2)

∂rjt

=
∑
n

{E[Prob(β
Djt

1 v(1)n ≥ r∗jt ≥ β
Djt

1 v(2)n )(1− τ2)r
∗
jt

+Prob(β
Djt

1 v(2)n ≥ r∗jt)(1− τ2)E[v(2)n |βDjt

1 v(2)n ≥ r∗jt]

+Prob(β
Djt

1 v(1)n < rjt)β2Πjt−D(Xj,Θ, β1, β2)|Njt = n]

∂Prob(N1jt = n|λjt...Djt−1)

∂rjt

+
∑
n

{E[(1− τ2)nF (
rjt

β
Djt

1

)n−1(1− F (
rjt

β
Djt

1

))− n
rjt

β
Djt

1

(1− τ2)F (
rjt

β
Djt

1

)n−1f(
rjt

β
Djt

1

)

+nF (
rjt

β
Djt

1

)n−1f(
rjt

β
Djt

1

)
Πjt−D(Xj,Θ, β1, β2)

β
Djt

1

|Njt = n]

×Prob(N1jt = n|rjt, Xj,Θ)} = 0,

where

Prob(N1jt = n|rjt, Xj,Θ) =
e−λAB

jt (λAB
jt )n

n!
and

∂Prob(N1jt = n|λjt...Djt−1)

∂rjt

=
−e−λAB

jt (λAB
jt )n + ne−λAB

jt (λAB
jt )n−1

n!
λAB
jt αM

1 .

⇒ r∗jt(Θ)

Notice that these FOCs are a seller’s best response functions to other sellers’ pricing
and selling mechanism strategy. Solving this dynamic game simultaneously is very
complicated. Also, there is no existing model which solves both dynamic prices and
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dynamic selling strategies for competing sellers. To make the problem tractable, in
this empirical part, I assume the observed market prices and choices of mechanisms
are solved by this dynamic model. Combining with Assumption 2, when solving a
seller’s dynamic optimization problem, I will put the observed other seller’s strategy
into the seller’s best response function. This simplification makes the game like a
partial single-agent problem which can be solved and estimated in the empirical part.

4.4 Analysis of two-stage models

Before I empirically solve the dynamic model, here I analyze two-stage games with
different specifications to see how the difference of profits between posted prices and
auctions will change when some interesting parameters in the model change.

To be specific, I compare ΠP
jt(Xj,Θ) and ΠA

jt(Xj,Θ) with the change of price
sensitivity αM

1 , constant in the arrival process ρMB
0 , β1 and β2. The comparison

can be divided into comparing ΠP
jt(Xj,Θ), β1 and ΠA

jt(Xj,Θ, β1, β2),
∂ΠP

jt(Xj ,Θ,β1)

∂Θ
and

∂ΠA
jt(Xj ,Θ,β1,β2)

∂Θ
. For example, for αM

1 ,

∂ΠP
jt(Xj,Θ, β2)

∂αP
1

=
∑
n

{E[p∗jt(1− τ2)Prob(vn ≥ p∗jt) + Prob(v(1)n < pPjt)β2Πjt−1(Xj,Θ)|Njt = n]

×
−e−λPB

jt (λPB
jt )n + ne−λPB

jt (λPB
jt )n−1

n!
}λPB

gt

×
pjtexp(α

P
1 p

∗
jt + αP

2 X
2
j )

∑
exp(αP

1 p
∗
jt + αP

2 X
2
j )− exp(αP

1 p
∗
jt + αP

2 X
2
j )

∑
exp(αP

1 p
∗
jt + αP

2 X
2
j )pjt

[
∑

exp(αP
1 p

∗
jt + αP

2 X
2
j )]

2
};

∂ΠA
jt(Xj,Θ, β1, β2)

∂αA
1

=
∑
n

{E[Prob(β
Djt

1 v(1)n ≥ r∗jt ≥ β
Djt

1 v(2)n )(1−τ2)r
∗
jt+Prob(β

Djt

1 v(2)n ≥ r∗jt)(1−τ2)E[v(2)n |βDjtv(2)n ≥ r∗jt]

+Prob(v(1)n < rjt)β2Πjt−D(Xj,Θ, β1, β2)|Njt = n]

−e−λAB
jt (λAB

jt )n + ne−λAB
jt (λAB

jt )n−1

n!
}lambdaPB

gt

rjtexp(α
A
1 r

∗
jt + αA

2 X
2
j )

∑
exp(αA

1 r
∗
jt + αA

2 X
2
j )− exp(αA

1 r
∗
jt + αA

2 X
2
j )

∑
exp(αA

1 r
∗
jt + αA

2 X
2
j )rit

[
∑

exp(αA
1 r

∗
jt + αA

2 X
2
j )]

2
};

Similar to other parameters. and ∂ΠA
jt(Xj ,Θ,β1,β2)

∂ρA0
.

For Θ, I use ρM0 = 0 or αM
1 = 0 or β1 = 1 or β2 = 1.
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The information we can get for the bound is when αM
1 = 0, we have 1− Fv(r

∗
jt) =

r∗jtfv(r
∗
jt).

ΠA
jt(Xj, 0) =∑

n

{E[(1−τ2)(1−F (p∗jt)
n)−npjt(1−τ2)F (p∗jt)

n−1f(p∗jt)|Njt = n]×Prob(N1jt = n|λAB
jt ) = 0.

Since the comparison depends on how we set other parameters. Here, I solve the
problem in four simple cases. For all of the following cases, I assume there are five
listings j ∈ 1, ..., 5 in the market for the same game in each period of each selling
mechanism. Sellers make their price strategy simultaneously in each period. X2

j =

X3
j = j, γ1 = 1, σv = 1 and vij N(X3

j , σv). ρMB
1 = ρMB

2 = 0,i.e.,λgtMB = exp(ρMB
0 )

and β1 ∈ {0.9, 1}.When t = 2,t = 0 and D = 1.
Case 1. outside = 0.5 ∗ j,β2 = 1,αM

2 = 0.5 and ρMB
0 = 1,αA

1 = αP
1 which change

from -0.5 to 0

Figure 5: Simulation under Case 1

Case 2. outside = 1+0.5 ∗ j,β2 = 1,αM
1 = −0.5 and αM

2 = 0.25,ρAB
0 = ρPB

0 which
from 0.8 to 1.2.

Case 3. outside = 0.5 ∗ j,β2 = 1,αM
1 = −0.5 and αM

2 = 0.25,ρAB
0 = ρPB

0 which
from 0.8 to 1.2.

Case 4. outside = 1+0.5∗j,αM
1 = −0.5, αM

2 = 0.5,ρAB
0 = ρPB

0 = 1 and β2 change
from 0.8 to 1.

Under these settings, we see from Figure 5,6,8,9 overall, the relative profits of
posted prices to auctions increase when buyers are more sensitive to price, the average
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Figure 6: Simulation under Case 2

Figure 7: Simulation under Case 2(2)
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Figure 8: Simulation under case 3

Figure 9: Simulation under Case 4
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ratio of buyers to sellers decreases, buyers discount auction more or sellers discount
continuous value less. This is especially true for the listings with high values. This
is because these listings always set higher price than average market price. When
buyers are less sensitive to price in the entry stage, more buyers will enter their
auctions which significantly increases the auction profit when the number of bidders is
moderate. Also, from Figure 7, we see the average prices of all the listings decrease as
buyers are more sensitive to price for both selling mechanisms. This can be explained
by the fiercer price competition among sellers.

Since in the empirical part, I assume the observed market prices are the optimal
prices from solving the dynamic problem. Here, I check how each seller’s price strategy
will change when plugging other listings’ optimal prices directly into its dynamic
model. The differences between prices in the new setting and original setting are all
smaller than 10−12.

5 Identification and Estimation

In this section, I discuss the identification strategy of the paper. Then I present
estimation procedure which is based on the identification argument.

5.1 Identification

The primitives in the model we wish to identify include θ, β1 ,β2 and the γ2 in the
outside option. I will show how θ and γ2 can be recovered using observed data given
β1 and β2.

First, using auction bids and the sales data of both posted prices and auctions, I
can recover the primitives on demand side. According to the model part, we know a
buyer’s bid in an auction satisfies the following one-to-one mapping given the buyer
is myopic and β1.

(1 + τ1)bijt = v
β
Djt
1

ij .

The distribution of bids and the distribution of values satisfy

F b(b) = Prob(bjt < b) = Prob(
v
β
Djt
1

ij

1 + τ1
< b) = F v(((1 + τ1)b)

1

β
Djt
1 ).

Therefore, given β1, we can identify the distribution of values based on the distri-
bution of bids. However, usually, we have no information about the potential number
of bidders for an auction and can only observe a truncated distribution of the bids.
To solve this problem, I use the method given by Song (2004)[29] and make use of the
two highest bids to recover the distribution of bids. Denote b1and b2 as the highest
and second highest bids.

gb(b1|b2) =
f b(b1)

1− F b(b2)
.
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Evaluating it at b2 = b1 = b.

f b(b) = F b′(b) = gb(b|b)− gb(b|b)F b(b).

Since there is only limited data, considering the high dimensionality problem with
nonparametric method, I use parametric estimation. Assume v follows log normal
distribution.

log(vij) = γ1X
3
j + ζg + ε2i

where ε2i follows normal distribution with mean µv and standard deviation σv. ζg is
a game specific fixed-effect. I assume µv and σv are the same across all the listings in
the market.

log(bij) = β1log(vij)

= β1(γ1X
3
j + ζg + ε2i )

= γb
1X

3
j + ζbg + εib

where εib follows normal distribution with mean µb and standard deviation σb. ζbg
is a game specific fixed-effect.

Assume the error term is still independent of X3
j and ζbg . We can regress the two

highest bids on X3
j without constant first and get the consistent estimation of γb

1 and
ζbj . Using the consistent error term log(bij)− γb

1X
3
j + ζbg and gb(b1|b2) = fb(b1)

1−F b(b2)
, we

can recover µb and σb by MLE (similar to Waisman(2017)[31]).
Without knowing β1, it is hard to identify F v(·) from F b(·). However, we can

utilize the identified information about F b(·) to uncover the arrival process of buyers
to auctions. Based on the model, the probability of making a sale for an auction is

Prob(selljA) =
∞∑
n=1

Prob(Njt = n)(1− Prob(vβ
Djt

< (1 + τ1)rjt)
n)

=
∞∑
n=1

e−λAB
jt (λAB

jt )n

n!
(1− F b(1 + τ1)rjt)

n)

Since

λAB
jt = λAB

gt

exp(αA
1 rjt + αA

2 X
2
jt)∑

jexp(α
A
1 rjt + αA

2 X
2
jt)

,

.
We can recover {ρAB, αA} using the observed sales data and identified distribution

of bids.
On the other hand, the probability of making a sale for a posted price is

Prob(selljp) =
∞∑
n=1

Prob(Njt = n)(1− Prob(v < (1 + τ1)pjt)
n)
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=
∞∑
n=1

Prob(Njt = n)(1− Prob(vβ
Djt
1 < [(1 + τ1)pjt]

β
Djt
1 )n)

=
∞∑
n=1

e−λjt(λjt)
n

n!
(1− F b([(1 + τ1)pjt]

β
Djt
1 )n),

The identification among the constant in the arrival process, price coefficient and
β1 heavily depends on the function form given the limited data. To get a better iden-
tification of other parameters. In the estimation part, I will make some assumption
about the value of β1.

Note that since prices come from seller’s maximization problem with the expected
demand in equilibrium, there is an identification problem of the coefficient of pjt
if there is some unobservables on demand side. I will use instrument later. One
potential instrument is the distance between sellers and stadium2.

So far, we have identified all primitives on demand side. For seller’s part, if we
assume sellers are risk neutral, the only thing we need to recover is the parameter γ2
in outside options. Given the discount rate of future β2, we can identify γ2 well using
the observed prices and mechanism choices data of sellers.

5.2 Estimation Procedure
5.2.1 Demand Side

According to the data I have, X3
j includes face value, row and section numbers of the

tickets. Also, I can observe the two highest bids b(1)j and b
(2)
j . I use LSDV method to

estimate γb and ζbg . After getting the residual ε̂(1)b and ε̂
(2)
b ,we can recover µb and σb

by MLE according to

g(ε
(1)
b |ε(2)b ) =

ϕ(ε
(1)
b )

1− Φ(ε
(2)
b )

,

LLK1(µb, σb) =
∑
i

log(
ϕ(ε

(1)
ib )

1− Φ(ε
(2)
ib )

).

Given the bid distribution for the games with auctions transacted, we can use this
information to continue the estimation of the arrival process for these games’ auction
listings by MLE, including the ones haven’t transacted. First, for auctions,

LLK2(ρ
AB, αA) =

∑
j

log[Prob(selljA|ρAB, αA)].

Since when we estimate the distribution of bids, we only use the listings who have
two highest bids. There is a potential sample selection bias (Heckman(1979)[20]). To
overcome this, I use a two-step method similar to Powell(1994) [26]. I first estimate
the probabilities that a listing has two highest bids given the initial estimation

2This instrument is also used in Sweeting (2012)[30].
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Prob(nb ≥ 2) =
∞∑
n=2

Prob(Njt = n)(1− Prob(vβ
Djt

< (1 + τ1)rjt)
n

−nProb(vβ
Djt

< (1 + τ1)rjt)
n−1 × Prob(vβ

Djt
> (1 + τ1)rjt).

Then plug them into parametric part of the bids function and re-estimate all the
parameters.

For posted prices, we estimate {ρPB, αP} using MLE for β1 = 1,namely, assume
the distribution of value is the same across different selling mechanisms and the
distribution of value is the same to the distribution of bids given τ1 = 0. The log
likelihood in this process is

LLK3(ρ
PB, αP ) =

∑
j

log[Prob(selljP |ρPB, αP )].

To overcome the endogenous problem of price in the arrival process, I choose
the distance between sellers and the stadium as instruments. These instruments are
potentially workable because they are not related to the unobservables on the demand
side but related to the prices. Sellers who live near the stadium are more easily to
attend the game when their tickets are not sold than sellers who live far away.

5.2.2 Supply Side

I assume all the sellers are forward-looking. They set their prices and mechanism
choices based on a dynamic problem given their expectation about demand and other
listing’s characteristics, including prices. As mentioned above, to simplify the prob-
lem, I assume the observed market prices and mechanism choices are solved by this
dynamic model. Combining with Assumption 2, the problem is similar to solve a par-
tial single-agent dynamic problem. To be specific, for a listing j in period t for game
g, we solve the seller’s dynamic problem by backward induction from period T to t
for both selling mechanisms. In each period τ ∈ [t, T ], the opponents of listing j are
the listings observed in period with specific selling mechanism M except listing j. The
observed market information about opponent listings’ characteristics and prices are
plugged into seller’s best response function from t to τ . Combining with the estimated
demand information, we can solve for each seller’s optimal prices and corresponding
expected profits. Given the expected profits {ΠA

jt,Π
p
jt}, sellers compare them with

the outside option ΠO
jt and choose which mechanism to use and whether to sell in the

current period or not. Given the probability of choosing each mechanism in period t
and the pseudo prices from the dynamic problem, we can construct moments using
the observed mechanism choices and prices. I use GMM to estimate the parameters
γ2

The objective function of the GMM estimation is

obj = [
IAt − ̂Prob(Auction)

pMt − p̂Mt
]cov−1[

IAt − ̂Prob(Auction)

pMt − p̂Mt
]′,
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wherêProbjt(Auction)

=
exp(Π

A

jt+1(Xjt+1,Θ, β1, β2))

exp(Π
A

jt+1(Xjt+1,Θ, β1, β2)) + exp(Π
P

jt+1(Xjt+1,Θ, β1)) + exp(Π
O

jt)

Π
O

jt =

{
β2log(exp(Π

A

jt+1(Xj,Θ)) + exp(Π
P

jt+1(Xj,Θ)) + exp(β2Π
O

jt+1(Xj,Θ))) t < T ;

β2 ∗ outsidej t = T

where outsidej = γ0
2 + γ1

2 × facevaluej.
In addition to the simplification above, when doing estimation, I use some other

tricks to reduce the computation burden. First, I use grids of the observed linear part
γ1X

3
j + ζg in the buyer’s value distribution part for each period. I assume the optimal

prices, selling mechanism decision and the seller’s profit in each period are functions of
the linear part. This simplification implies that if two listings have same γ1X3

j + ζg in
period t, they must have same αM

2 X2
j +αM

3 X1
g ,λMB

gt and opponents in period t. It may
be true because the linear part in value distribution includes more specific information
about the tickets. There are two violations of this: 1) Two listings sell exactly the
same tickets in the same period but with very different non-ticket characteristics; 2)
two tickets have the exactly same realization of the linear part but for different games.
These cases are not common considering the small volume of tickets sold on eBay.
Then after solving for the optimal sellers’ strategies for the selected grids, I can use
interpolation to get the decisions and profits for other realizations of the linear part.
Also, considering I treat the auction listings in the last period as posted price listings,
I restrict a seller’s selling mechanism to be posted price only for the last period when
solving the model.

6 Results

6.1 Reduced Form Analysis

According to the model I construct above, I first do some reduced form analysis.
Table B1 shows how the probability of a listing to be chosen is related to the listing’s
characteristics. Columns 1-3 use simply linear models and column 4 is the result of
conditional logit model where a group is defined as the set of listings for the same
game in the same period. Overall, we see a listing is more likely to be sold if it is sold
by auctions. Face value, sections and other characteristics of the tickets significantly
affect the probability of transaction. Similar to Figure 2, transaction probability
decreases when the time is close to the event. The coefficients of log(start price) are
always negative as expected. Finally, some non-ticket information, such as shipping
fee, also affect the probability of transaction. To see how the results change within
different selling mechanisms. Table B2 and Table B3 report the results for auctions
and posted prices respectively. They show similar results.
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Next, I run simple regression to see how the transaction prices and start prices
are affected by the listing characteristics. From Table B4, we see auctions always
have lower transaction prices. The transaction prices decrease as the time is close to
the event and concave overtime. Table B5 shows the start prices also have the same
pattern.

Finally, we briefly see how the selling mechanism choice affected. Column 2 in
Table B6 shows auction share decreases as the time approaches the event and is
concave with time. Also, tickets with higher face value seem more likely to be sold
by auctions.

6.2 Structural Estimation
6.2.1 Demand

I first estimate the distribution of bids and arrival process on demand side without
considering the endogenous problem of prices. The first two columns in Table 2 give
the estimation results for auctions and posted prices respectively. Correction means
whether the estimation for the distribution of bids has been corrected for the poten-
tial sample selection problem. The estimation results in the arrival part are the ones
after the correction. We see the coefficients of prices are positive in both mechanisms,
which counters our intuition. Therefore, I use instruments to deal with the potential
endogeneity. As mentioned above, I use the distance from sellers to stadium as in-
struments. I denote the instruments as {distance1, distance2anddistance3} meaning
the distance is less 25 miles, 25 125 miles and more than 125 miles respectively. Table
1 shows the results for regression of start prices on the instruments and other control
variables. The start price is significantly related with the distance variables. The
coefficients of distance2 and distance3 are negative because sellers are more difficult
to attend the games by themselves when they live far away from the stadium and
thus they are more likely to set lower prices than sellers who live near the stadium.

The results with IV are also shown in Table 2. First, from the lower part of the
table, we can find the estimation of γ1 in the bid distribution part, all the sign of the
coefficients are consistent with our expectation. When buyer’s valuation of a ticket is
higher when the face value of the tickets is higher, when the section number is lower
or when the row number is lower. Variable Prob represents the probability that we
can observe two highest bids in the auction. From Figure 10, we see the correction
sightly change the value distribution (red solid line v.s. black solid line). In the arrival
process part, we see weekdays, days to go and prices significantly affect the arrival
rate for both auctions and posted prices. The weekend game attracts more buyers.
When the time is close to the event, overall, the arrival rate of buyers is higher. Also,
the start price will affect the arrival rate to each listing significantly although the
magnitude is not large. For posted prices, some other characteristics of the listings
such as the lower shipping fee will attract more buyers. I also try β2 = 0.95. I find
the estimation results of arrival process are similar (see last column in Table 2).

Figure 11 shows how the arrival rates of both selling mechanisms change over time.
We see both of them are not large and increase over time. Since, as mentioned above,
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I treat the auction in period T of the data sample as fixed prices, we can see that in
period T, the arrival rate of posted prices significantly increases. Figure 12 reports
how the estimation results perform for both selling mechanisms, where the red solid
lines depict the observed market transaction rates and the black dash lines represent
the predicted transaction rates. We see with the given estimation parameters, we can
generally predict the dynamic pattern of transaction rates across time well.

Table 1: Test IV
(2) (3)

Variable Auction Posted Price Auction Posted Price
constant 63.0796*** 69.9661*** 55.1472*** 69.2244***

(1.5207) (0.9463) (1.5955) (0.9899)
Distance2 -6.0050*** -1.3950*** -5.2058*** -1.4734***

(0.6967) (0.4947) (0.6945) (0.4956)
Distance3 -5.1008*** -8.9107*** -5.5601*** -8.9921***

(0.6567) (0.4188) (0.6535) (0.4200)
titlsection 0.1641 -0.0113 0.1177 -0.0159

(0.0895) (0.0591) (0.0890) (0.0591)
titlrow -0.0147 0.0173 -0.0363 0.0158

(0.0859) (0.0562) (0.0854) (0.0562)
shipping 1.6127*** -0.9183*** 1.5334*** -0.9202***

(0.0527) (0.0393) (0.0526) (0.0394)
opponent -0.1455*** 0.4520*** -0.1643*** 0.4511***

(0.0492) (0.0304) (0.0489) (0.0304)
weekdays -9.5948*** -8.1363*** -9.3046*** -8.1295***

(0.3254) (0.2047) (0.3240) (0.2047)
daystogo 1.0912*** 0.1102

(0.0700) (0.0432)

6.2.2 Supply

Using the results from demand part, with the tricks I mentioned above, I solve the
inner loop of the dynamic game and use GMM to estimate γ0

2 and γ1
2 in sellers’ outside

options γ0
2+γ1

2×facevalue. When γ̂0
2 = 26.5562 and γ̂1

2 = 0.2064, the GMM objective
function can optimized given β2 = 0.99. The value of the objective function is 2.70e-
09. To see the performance of the estimated results, I draw Figure 13 and 14. Figure
13 gives the average market price and average predicted price in each period given
their observed prices mechanism choice. Figure 14 reports how the observed market
auction share and predict auction share change across time. We can see the estimation
results can predict the average prices well but give a little higher prediction of auction
share than observed one. This is especially true for period T-2. There are two reasons
for this dramatic increase. First, in period 3, sellers can set auction duration to be
1 or 3 rather than 1 only and the arrival rates of buyers in period T-1 and T-2 are
relative high. The model predicts the relative profits from auctions increase a lot
considering much more buyers enter the auctions given β2 = 0.99. Second, in period
T-2, the continues valuation from the remaining periods is low. Therefore, the profits
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Table 2: Estimation Results of Demand Side
without IV with IV
Auction Posted Prices Auction Posted Prices Posted Prices

constant 8.2413** 8.0130*** 13.7287*** 11.2348*** 11.2514***
(4.2917) (2.1550) (0.9431) (0.2556) (0.0839)

opponent 0.0781 0.0599 0.0029 0.0264*** 0.0384***
(0.0812) (16.5719) (0.0057) (0.0089) (0.0060)

weekdays -0.4384 -0.3716 -2.2075*** -1.3601*** -1.4078***
(1.0809) (12.6336) (0.2059) (0.0725) (0.0168)

Arrival daystogo -0.0020 0.0485 -0.1202*** -0.0857*** -0.0933***
(0.0148) (13.5370) (0.0264) ( 0.0067) (0.0070)

titlsection 0.0266 -0.0143 -0.0125 -0.0305*** -0.0327***
(0.1143) (0.9405) ( 0.0117) (0.0087) (0.0075)

titlrow -0.0143 0.0151 -0.0086 -0.0401*** -0.0426***
(0.0462) (10.6222) (0.0225) (0.0092) (0.0083)

start price 0.0286** 0.0146 -0.1949*** -0.1183*** -0.1279***
(0.0114) (10.8730) (0.0217) (0.0042) (0.0033)

shipping -0.0354 -0.0477 0.0267 -0.1996*** -0.2015***
(0.0611) (4.9830) (0.0260) (0.0110) (0.0115)

llk -19777 -17000
correction No Yes No Yes Yes
face value 0.0178 0.0177 0.0178 0.0175 0.0175
section -0.0273 -0.0271 -0.0273 -0.0280 -0.0280
row -0.0055 -0.0058 -0.0055 -0.0058 -0.0058

Distribution prob -0.6292 -0.8905 -0.8905
of Bids σb 0.3367 0.3297 0.3367 0.3391 0.3391

µb -1.2156 -1.1246 -1.2156 -1.1047 -1.1047
β1 1 1 1 1 0.95

from posted prices are not high. Overall, however, the model can capture the average
market information in these two figures well.

However, I should mention here. The model hasn’t capture the variation of prices
very well. Also the average prices of auctions is relative high compared to the observed
ones (see Table 3 and Figure 15). These differences may be explained by several
reasons. First, people are not so patient as we model, which means the continuation
value should have less influence than the model specification. Second, buyers may
discount auctions more. Finally, the format of outside option is more flexible than the
model depicts. I will try different discount rates and more flexible outside option in
the future. Another thing I can do is changing sellers from risk neutral to risk averse
(Similar to Waisman(2017)). Since the profits from auctions are more fluctuated than
those from posted prices for same listings, this may lower the relative profits from
auctions.
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Figure 10: Distribution of Bids

Figure 11: Estimated Arrival Rates
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Figure 12: Market and Estimated Transaction Rates

Figure 13: Observed and predicted average auction share over time
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Figure 14: Observed and predicted average auction share over time

Table 3: Observed and Predict Prices Information
measurement real market estimated
average price overall 47.9187 48.0507
average price of auctions 41.5406 47.6728
average price of posted price 50.4079 48.2829
std of prices overall 41.5109 13.3776
std of prices of auctions 40.0594 14.0722
std of prices of posted prices 41.8010 14.7905
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Figure 15: Observed and predicted average auction share over time
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7 Counterfactual Analysis

7.1 Different Discount Rates of Auctions and Continuous Value

Given the estimated parameters above, we start the counterfactual analysis. I first do
some simple analysis by changing the value distribution of buyers and changing the
discount rate of auctions and continuation values. According to Wang (1993), if the
value distribution of bidders is more dispersed, then the relative profit from an auction
is higher. To check this, I change the σb = σ̂b/2 in the first exercise. From Table
4, we see the auction share slightly decrease in this scenario. The average price is
lower and equilibrium prices are less dispersed after this change. Then I use different
discount rate of auctions to check how it will affect the auction share. We see when
β1 change from 1 to 0.9, the auction share slightly decreases. The small magnitude
may result from the entry rate already capture the buyer’s part difference between
two selling mechanisms. It may also because I have overestimate the influence of
outside options. The third scenario is to check how people become less patient (β2

from 0.99 to 0.95) will change the market equilibrium. Similar to Case 4 in the two-
stage model analysis, when sellers discount their continuation value more, they have
more incentive to sell their goods in the current period, so the average auction share
decreases. The less continuation value also reduces the average price and the expected
profit of each listing.

7.2 Different Market Characteristics
7.2.1 Price sensitivity

In this subsection, I will check how changing the characteristics of the platform affects
the equilibrium auction share and prices. First, in light of the search algorithm on
eBay, one counterfactual scenario is making it more related to prices. Although I
have no click-through data, I will show that the change is similar to increase the price
sensitivity in the buyer’s arrival process. To be specific, if buyer’s entry decision to a
listing is related to the ranking of the listing, e.g., buyers cannot pay full attention to
all the listings of a game, then a listing listed higher will be more likely to be chosen.
The ranking of the listings is related to the search algorithm used by the platform. If
the default ranking is not according to the best match algorithm but from lowest prices
to highest prices, then buyers will be more sensitive to price. Similar to Dinerstrien
et al.(2017), we can add a weight wjt to represent the probability that listing j of
mechanism M will be considered in period t.

wM
jt = exp(−r(

pjt −min(pjt
std(pgt)

),

where r > 0.

Add this weight to the original arrival rate equation, we have

λMB′

jt = wM
jt λ

MB
gt

exp(αM
1 pjt + αM

2 X2
jt)∑

jw
M
jt exp(α

M
1 pjt + αM

2 X2
jt)

,
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= exp(ρMB
0 + ρMB

1 t+ ρMB
2 X1

g )
exp(αM

1 pjt − r(
pjt−min(pjt)

std(pgt)
) + αM

2 xjt)∑
jexp(α

M
1 pjt − r(

pjt−min(pjt)

std(pgt)
+ αM

2 xjt))
.

Therefore, we can expect that the more price related search algorithm can make the
buyer’s arrival rate or entry decision more sensitive to price. Considering this, for this
counterfactual scenario, I change the price coefficient to αM

1 = 2αM
1 , for M ∈ {A,P}.

We have done this simulation in a simple two-stage case in the model part. Based on
that simulation, we expect the average auction share will decrease after this change.
The second column in Table 5 gives the results of this counterfactual analysis. We see
it follows our expectation that the average auction share is lower than before. Also,
because in this case the price competition among listings in the same mechanisms is
fiercer, we see the average prices for all the cases are lower and prices are also less
dispersed. The corresponding profits which include continuation value also become
slightly lower.

Note that in the empirical part of supply side, I have made assumptions to make
the model look like a partially single-agent model. Here when I do the counterfactual
analysis, I still keep these assumptions. Therefore, when I solve a seller’s optimal
strategy I will assume other sellers keep the same prices (observed market prices) in
the dynamic model. This will generally underestimate the magnitude of price decrease
results from the higher price sensitivity since in the full competition dynamic model,
a seller has to take other seller’s price decrease into consideration.

7.2.2 Availability of listings

Compared with other tickets platform, eBay has relative less tickets available on
the market. An ideal way to construct the counterfactual scenario is to expand the
number of listings for each game in each period. However, it is hard to figure out a
proper way to extend these consideration sets. Here, I use a simple way to get some
idea of this change. Since when the number of competitive listings becomes larger,
buyer’s probability to choose all listings in the original set will uniformly become less.
This is equivalent to decrease the constant in λMB

gt . Therefore, for this exercise, I
make the following change: λMB

gt = ˆλMB
gt /2, for M ∈ {A,P}. The third column in

Table 5 shows that this change will decrease average auction share, average price level
and price dispersion of these existing listings. These results are consistent with Case
3 in the model section as well.

7.2.3 Commission fees

Finally, we can try a different commission fee policy. Since eBay only collects com-
mission fees from sellers, here, I just consider how increase the seller’s commission fees
from 10% to 20 % will change the market. Column 4 in Table 5 implies this change
will significantly increase the equilibrium prices. However, since the commission fee is
collected from sellers by the same percentage in both mechanisms, the auction share
almost keeps the same after in this scenario.
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7.3 Only With Posted Prices

In the end, let’s see how the equilibrium prices and sellers’ profits change if we only
allow the sellers to use posted price mechanism. In this exercise, I will still keep
the assumptions I have made before. Therefore, I haven’t increase the number of
competitive sellers in posted prices when solving for an individual seller’s dynamic
problem. Table 6 summarizes the results. When sellers are only allowed to use posted
price mechanism, some sellers who prefer to use auctions have to choose posted price.
This will lower the sellers’ expected profits. Given the lower continuation value in the
dynamic model, sellers will set lower prices than before. It will be more interesting
if we can figure out how the competition change and affect the market equilibrium
when sellers only allow for posted prices. However, it requires us to solve the dynamic
price competition problem with some assumption about the buyer’s arrival process
to posted prices. This will be studied more in the future.

Note that most counterfactuals I have made above, such as change the search
algorithm to be more related to price, will decrease the average equilibrium prices,
price dispersion and seller’s expected profit. However, all these results are given under
the assumption that the other things in the buyer’s entry model keep the same. This
may not be true. For example, if the market prices become lower, more buyers are
likely to be attracted from other platforms. This may increase the sellers’ and the
platform’s profits in the long run. Also, one thing I haven’t shown explicitly in the
model but is also important is when the market prices are less dispersed, sellers will
have lower cost to discover proper prices for their listings and this may mitigate
sellers’ incentive to use auctions.

Table 4: Summary of Counterfactual Analysis (1)-(3)
estimated value distribution β1 β2

average auction share 0.3669 0.3664 0.3666 0.3132
average prices overall 48.0507 42.7715 48.4354 25.1901
average prices of auctions 47.6728 42.8200 47.6161 22.8645
average prices of posted prices 48.2829 42.8434 48.8412 26.4072
std prices overall 13.8792 11.9816 13.4363 11.9108
std of prices in auctions 13.3776 11.4208 12.9615 10.9844
std of prices in posted prices 14.7905 11.8233 14.3018 12.0380
average profit overall 41.1828 40.5437 41.1010 22.0903
average profit from auctions 41.1811 40.5420 41.0985 22.1647
average profit from posted prices 41.4326 40.8422 41.3589 21.9037
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Table 5: Summary of Counterfactual Analysis (4)-(6)
estimated price sensitive marketthickness fee

average auction share 0.3669 0.3590 0.3589 0.3668
average prices overall 48.0507 45.6442 46.1186 53.5227
average prices of auctions 47.6728 45.2768 45.8539 53.0824
average prices of posted price 48.2829 45.8140 46.2622 53.8110
std of prices overall 13.8792 4.9098 5.1970 13.5415
std of prices in auctions 13.3776 5.4907 5.7673 12.6935
std of prices in posted prices 14.7905 5.5159 5.8811 14.9624
average profit overall 41.1828 39.3114 39.3140 40.9456
average profit from auctions 41.1811 39.3113 39.3136 40.9448
average profit from posted prices 41.4326 39.6763 39.6791 41.2067

Table 6: Only with Posted Price
overall auctions posted prices only with posted prices

average prices 48.0507 47.6728 48.2829 43.8033
std of prices 13.8792 13.3776 14.7905 6.0672
average profits 41.1828 41.1811 41.4326 37.3989
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8 Conclusion

This paper tries to assess the dynamic selling mechanism choice problem in a perish-
able good market. As typical perishable goods, sport tickets are resold on different
platforms by various selling mechanisms. Platforms are different from each other in
many other dimensions, such as search algorithms, market thickness and commission
fees. Whether these characteristics of a platform will affect its participants’ dynamic
mechanism choices and pricing strategies seems an interesting question.

Motivated by this observation, this paper analyzes buyers’ and sellers’ behavior
on eBay’s ticket resale market. By modeling and estimating buyers’ decision process,
I find that buyers are sensitive to price but the sensitivity has moderate magnitude.
When I assume there is no value discount in auctions, their arrival rates to posted
prices are always higher than the one to auctions. Given the demand model, the
dynamics of a seller’s mechanism choice across time can be explained by the proposed
dynamic model with an outside option in the end. Combining the assumptions about
sellers with the market observables, I am able to structurally estimate the seller’s
dynamic pricing and mechanism choice model. This model can capture the price
competition to some extent. Although some of the market information, such as
the price dispersion cannot be captured, the estimation results are able to correctly
predict the market average prices, the dynamics of prices and the dynamics of auction
share.

Given the estimation results, I check how the market average auction share, average
price and sellers’ profits change in different counterfactual scenarios. First, when
sellers are more patient about the continuation value from future sales, they have
less incentive to use auctions. In other words, forward-looking sellers are generally
more likely to use dynamic posted prices than myopic sellers are. Second, the average
auction share will decrease if buyers are more sensitive to price when they make entry
decisions. Under this scenario, the average equilibrium price and the price dispersion
are also lower than before. I show that this finding can imply how the change of
search algorithm will affect the market. Specifically, when the search algorithm is
more related to prices, auctions will be relative less attractive. Similar to the price
sensitivity, if there are more available listings for the same game in the same period
with same selling mechanism, the average auction share will be lower. In these two
exercises, the average expected profits of sellers are reduced by about 5 % in my
setting. All of these are consistent with the simple simulations that I conduct in the
model part. Besides, the average auction share would not change significantly when
increasing the commission fees from sellers. Finally, I eliminate auctions from the
mechanism menu to see how the market equilibrium will change. The result indicates
that the average price and average sellers’ profits will decrease under this exercise.
This is because the sellers who prefer to use auctions are stuck with posted prices,
resulting in lower continuation value and lower average prices.

The paper can be improved in the following aspects. First, as I mentioned above,
to make the model tractable, I have made several assumptions. Some of them, such as
the perfect foresight assumption, may be too strong. What’s worse, the assumptions
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may affect the results of some counterfactual analysis. For example, when eliminating
auctions, I still keep the assumption that a seller will use the original market informa-
tion as his opponent’s information. This assumption eliminates the change of market
competitiveness under the new scenario. Therefore, relaxing the assumption will be
important for my future study. Second, the estimation results cannot capture some
market information, such as the price dispersion. Besides, the average auction share
is relative higher than the observed one. Since the estimation results show seller’s
decisions heavily rely on his outside option in each period, a more flexible model for
the outside option may be helpful. Finally, as I mentioned before, I am not able to
identify all the parameters including the discount rate of auctions well given the lim-
ited data. Current results are under the assumption that the value distribution is the
same across different selling mechanisms. This will be violated if buyers do discount
their value from auctions in real market. Therefore, to make the results more robust,
I will do more estimation under different discount rates later.
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Appendix

A Supplement to Data and Market

Figure A1-A5 give the search page of eBay and Stubhub.

Figure A.1: Search Page 1 on eBay

Following Table A1 to Table A9 and Figure A6 and A7 supplement the summary
statistics section above.
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Figure A.2: Search Page 2 on eBay

Figure A.3: Search Page 3 on eBay
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Figure A.4: Search Page 1 on Stubhub

Figure A.5: Search Page 2 on Stubhub
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Table A.1: Summary of Opponents
Values Freq. Percent Cum.
1 9,925 12.34 12.34
2 3,822 4.75 17.10
3 7,641 9.50 26.60
4 3,708 4.61 31.21
5 4,073 5.07 36.27
6 1,558 1.94 38.21
7 2,787 3.47 41.68
8 4,563 5.67 47.35
9 2,132 2.65 50.00
10 3,615 4.50 54.50
13 8,922 11.10 65.59
14 3,827 4.76 70.35
15 1,995 2.48 72.83
16 6,486 8.07 80.90
17 8,569 10.66 91.56
18 3,695 4.60 96.15
19 3,095 3.85 100.00
Total 80,413 100.00

Table A.2: Summary of Weekdays
days Freq. Percent Cum.
1 27,264 29.50 29.50
2 14,849 16.07 45.57
3 50,298 54.43 100.00
Total 92,411 100.00

Table A.3: Summary of Sections
section Freq. Percent Cum.
1 5,858 6.34 6.34
2 7,155 7.74 14.08
3 2,751 2.98 17.06
4 9,826 10.63 27.69
5 3,633 3.93 31.62
6 11,949 12.93 44.55
7 10 0.01 44.56
9 725 0.78 45.35
10 7,265 7.86 53.21
12 10,965 11.87 65.08
13 15,724 17.02 82.09
14 10,534 11.40 93.49
15 6,016 6.51 100.00
Total 92,411 100.00
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Table A.4: Summary of Rows
Variable Obs Mean Std. Dev. Min Max
row 92,411 8.743981 6.012439 1 124

Table A.5: Summary of Auction Duration
duration Freq. Percent Cum.
0 66,239 71.68 71.68
1 2,514 2.72 74.40
2 664 0.72 75.12
3 4,380 4.74 79.86
4 782 0.85 80.70
5 4,641 5.02 85.73
6 1,762 1.91 87.63
7 8,235 8.91 96.54
8 76 0.08 96.63
9 500 0.54 97.17
10 2,618 2.83 100.00
Total 92,411 100.00

Table A.6: Average Number of Listings for the Same Game in the Same Period
Variable Obs Mean Std. Dev. Min %25 %75 Max
numberoflistings 1,398 66.10229 40.71524 2 39 91 245

Table A.7: Number of Bids in Auctions
numberofbids Freq. Percent Cum.
0 19,577 74.12 74.12
1 2,026 7.67 81.79
2 4,810 18.21 100.00
Total 26,413 100.00

Table A.8: Transactions and Auctions
chosen

auction 0 1 Total
0 64,116 1,882 65,998
1 24,929 1,484 26,413
Total 89,045 3,366 92,411

Table A.9: Relative Start Prices and Relative Transaction Prices
relative price mechanism Obs Mean Std. Dev. Min Max

total 16,327 0.8357 0.6415 0.0000 4.6871
start price/face value auction 6,181 0.5002 0.4481 0.0000 1.9227

posted price 10,146 1.0400 0.6554 0.0000 4.6872
total 16,327 1.0044 0.5762 0.011 6.5385

transaction price/face value auction 6,181 0.7682 0.4200 0.011 3.125
posted price 10,146 1.1483 0.6100 0.0658 6.5385
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Figure A.6: 2015 Chicago Cubs Season Schedule

Figure A.7: Chicago Cub’s 2015 Season Ticket Plan
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B Tables for Reduced Form Analysis

Table B.1: Transactions
(1) (2) (3) Clogit

VARIABLES chosen chosen chosen chosen
auction 0.0178*** 0.0182*** 0.0195*** 0.695***

(0.00156) (0.00156) (0.00159) (0.0462)
facevalue 0.000648*** 0.000620*** 0.000404*** 0.00784***

(4.76e-05) (4.80e-05) (6.91e-05) (0.00231)
section 0.00185*** 0.00206*** 0.00134*** 0.0532***

(0.000222) (0.000245) (0.000292) (0.0100)
row -0.000492*** -4.29e-05 6.65e-05 -7.62e-05

(0.000128) (0.000159) (0.000162) (0.00335)
daystogo -0.0176*** -0.0176*** -0.0175***

(0.000705) (0.000705) (0.000705)
qdaystogo 0.000912*** 0.000908*** 0.000902***

(4.58e-05) (4.58e-05) (4.57e-05)
logstartprice -0.0236*** -0.0234*** -0.0257*** -0.348***

(0.000640) (0.000642) (0.000660) (0.0128)
shipping -0.000869*** -0.000844*** -0.000772*** -0.0176***

(0.000141) (0.000143) (0.000144) (0.00520)
opponent 0.000212* 0.000224* 0.0232***

(0.000118) (0.000118) (0.00367)
days -0.00816*** -0.00827*** -0.368***

(0.000848) (0.000848) (0.0479)
titlsection -0.000799*** -0.00128***

(0.000299) (0.000306)
titlrow -0.00124*** -0.00146***

(0.000267) (0.000273)
31.eventid 0.299***

(0.0629)
184.eventid 0.000863

(0.00963)
Constant 0.158*** 0.169*** 0.910***

(0.00562) (0.00615) (0.0826)
Observations 73,163 73,163 73,163 51,601
R-squared 0.041 0.042 0.051
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Table B.2: Transaction of Auctions
(1) (2) (3) Clogit

VARIABLES chosen chosen chosen chosen
facevalue 0.000602*** 0.000474*** 6.77e-05 -0.00290

(0.000110) (0.000111) (0.000178) (0.00397)
section 0.00173*** 0.00236*** 0.000874 0.0177

(0.000547) (0.000575) (0.000790) (0.0172)
row -0.000639* 0.00138*** 0.00178*** -0.00203

(0.000330) (0.000404) (0.000418) (0.00499)
daystogo -0.0255*** -0.0251*** -0.0268***

(0.00175) (0.00175) (0.00175)
qdaystogo 0.00134*** 0.00130*** 0.00137***

(0.000113) (0.000113) (0.000113)
logstartprice -0.0245*** -0.0236*** -0.0240*** -0.342***

(0.00101) (0.00101) (0.00105) (0.0167)
shipping -0.000233 -0.000372 -0.000239 0.0204***

(0.000316) (0.000322) (0.000331) (0.00768)
opponent -0.000156 -0.000164 0.0269***

(0.000291) (0.000290) (0.00796)
days -0.0104*** -0.0110*** -0.390***

(0.00207) (0.00208) (0.110)
titlsection -0.00313*** -0.00258***

(0.000727) (0.000760)
titlrow -0.00570*** -0.00602***

(0.000686) (0.000712)
31.eventid 0.351***

(0.129)
184.eventid -0.0351

(0.0233)
Constant 0.218*** 0.275*** 1.031***

(0.0136) (0.0151) (0.196)
Observations 20,610 20,610 20,610 10,097
R-squared 0.051 0.055 0.068
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Table B.3: Transaction of Posted Prices
(1) (2) (3) Clogit

VARIABLES chosen chosen chosen chosen
facevalue 0.000582*** 0.000582*** 0.000551*** 0.0164***

(5.30e-05) (5.37e-05) (7.45e-05) (0.00308)
section 0.00176*** 0.00178*** 0.00157*** 0.0559***

(0.000229) (0.000260) (0.000296) (0.0134)
row -0.000402*** -0.000437*** -0.000591*** -0.00820

(0.000135) (0.000168) (0.000173) (0.00526)
daystogo -0.0149*** -0.0149*** -0.0146***

(0.000722) (0.000722) (0.000723)
qdaystogo 0.000765*** 0.000765*** 0.000742***

(4.69e-05) (4.69e-05) (4.69e-05)
logstartprice -0.0211*** -0.0212*** -0.0270*** -0.751***

(0.000964) (0.000967) (0.00105) (0.0376)
shipping -0.00114*** -0.00114*** -0.00111*** -0.0575***

(0.000157) (0.000157) (0.000160) (0.00917)
opponent 0.000340*** 0.000339*** 0.0207***

(0.000122) (0.000122) (0.00411)
days -0.00792*** -0.00793*** -0.353***

(0.000880) (0.000882) (0.0522)
titlsection -3.73e-05 -0.000577*

(0.000316) (0.000331)
titlrow 9.65e-05 0.000143

(0.000273) (0.000283)
32.eventid 0.297***

(0.0661)
184.eventid 0.0141

(0.00993)
Constant 0.140*** 0.140*** 0.876***

(0.00608) (0.00661) (0.0881)
Observations 52,553 52,553 52,553 23,103
R-squared 0.026 0.026 0.038
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Table B.4: Transaction Prices
(1) (2) Auctions Posted Prices

VARIABLES transaction price transaction price transaction price transaction price
auction -11.52*** -10.27***

(0.340) (0.286)
facevalue 1.058*** 0.857*** 0.923*** 1.126***

(0.0124) (0.0149) (0.0146) (0.0176)
section 0.998*** 0.373*** 0.669*** 1.030***

(0.0579) (0.0622) (0.0676) (0.0849)
row 0.198*** 0.175*** -0.0740** 0.360***

(0.0292) (0.0252) (0.0347) (0.0425)
daystogo 2.052*** 1.860*** 1.609*** 2.229***

(0.162) (0.129) (0.196) (0.226)
qdaystogo -0.0764*** -0.0712*** -0.0418*** -0.0928***

(0.0106) (0.00845) (0.0127) (0.0148)
shipping -0.720*** -0.568*** -0.769*** -0.653***

(0.0646) (0.0539) (0.0663) (0.101)
opponent 0.205*** -38.75*** 0.234*** 0.164***

(0.0280) (0.873) (0.0326) (0.0402)
days -2.413*** 416.5*** -3.374*** -1.906***

(0.195) (10.15) (0.226) (0.280)
31.eventid -670.4***

(15.74)
184.eventid 0.831

(1.470)
Constant -16.30*** -590.6*** -14.75*** -21.51***

(1.362) (15.74) (1.629) (1.924)
Observations 14,410 14,410 5,443 8,967
R-squared 0.579 0.737 0.714 0.499
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Table B.5: Start Prices
(1) (2) Auctions Posted Prices

VARIABLES start price start price start price start price
auction -11.76*** -12.59***

(0.422) (0.416)
facevalue 1.421*** 1.384*** 1.234*** 1.500***

(0.0126) (0.0179) (0.0192) (0.0161)
section 1.247*** 1.383*** 0.969*** 1.404***

(0.0618) (0.0750) (0.0965) (0.0770)
row -0.506*** -0.422*** 0.127** -0.683***

(0.0357) (0.0350) (0.0583) (0.0444)
daystogo 0.656*** 0.787*** 1.345*** 0.455*

(0.197) (0.190) (0.309) (0.243)
qdaystogo -0.0191 -0.0295** -0.0268 -0.0189

(0.0128) (0.0123) (0.0200) (0.0158)
shipping -0.201*** -0.135*** -0.111** -0.196***

(0.0394) (0.0386) (0.0559) (0.0527)
opponent 0.217*** -34.76*** 0.232*** 0.195***

(0.0329) (0.985) (0.0514) (0.0409)
days 0.671*** 371.0*** -0.502 1.179***

(0.237) (12.88) (0.366) (0.296)
31.eventid -632.4***

(16.91)
184.eventid 0.414

(2.595)
Constant -19.15*** -524.6*** -27.68*** -21.60***

(1.497) (22.25) (2.373) (1.859)
Observations 73,163 73,163 20,610 52,553
R-squared 0.258 0.314 0.342 0.236
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Table B.6: Auction Choice
(1) (2) clogit

VARIABLES auction auction auction
facevalue 0.000785*** 0.00123*** 0.0377***

(0.000101) (0.000111) (0.000944)
section 0.000490 0.00299*** 0.0800***

(0.000514) (0.000542) (0.00393)
row -0.00679*** -0.00733*** -0.0436***

(0.000310) (0.000312) (0.00182)
daystogo -0.00307*** 0.0221***

(0.000411) (0.00172)
qdaystogo -0.00169***

(0.000112)
shipping 0.00538*** 0.0241***

(0.000345) (0.00185)
opponent -0.000157

(0.000288)
weekdays 0.0135***

(0.00207)
logstartprice -0.647***

(0.0115)
Constant 0.325*** 0.185***

(0.00885) (0.0131)
Observations 73,168 73,168 72,599
R-squared 0.009 0.016
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C New Model with Change of Seller’s Arrival Process
C.0.1 Model

Assumption 3 When sellers set prices and make mechanism choices, the only in-
formation they can get is λMB

t and λMS
t . Then the arrival rate of buyers in each good

as

log(λMB
jt ) = log(

λMB
t

λS
t

) + αM
1 (pjt − p) + αM

2 (X2
jt −X2)

= (ρMB
0 − ρMS

0 ) + (ρMB
1 − ρMS

1 )t+ (ρMB
2 − ρMS

2 )X1
g + αM

1 (pjt − p) + αM
2 (X2

jt −X2)

λB
jt = exp(ρ0 + ρ1t+ ρ2X

1
g + αM

1 (pjt − p) + αM
2 (X2

jt −X2)).

X2
jt include the section and row information on the first page,

X
2 and P are the average value of characteristics and average price of listings for

the same game in the same period and selling mechanism. Also, when I do estimation,
in the exercise, I use log-price instead of price in the arrival process.

Here, I estimate the parameters in value distribution and arrival process simulta-
neous using sale information for both auctions and posted prices respectively. We
can put some restrictions. For example, consider the linear part interpolation in the
seller’s problem, we can restrict the linear part in the value distribution is the same
across different selling mechanisms, but allow mean and variance of the distribution
to be different. There are some disadvantages of this method:1) we cannot estimate
fixed effect in the value distribution part; 2) the bids information is not used;3) many
parameters are estimated simultaneously which may increase the computation burden
and make the identification more relies on the function form. However, it can also
make the value distribution more flexible and reduce the sample selection problem
we mentioned above.

Prob(sellMjt ) =
∑∞

n=1
Prob(Njt = n)(1− Prob(log(b) < log((1 + τ1)pjt))

n)

=
∑∞

n=1

e−λjt(λjt)
n

n!
(1− F b(log(pjt))

n)

and

log(λMB
jt ) = (ρMB

0 −ρMS
0 )+(ρMB

1 −ρMS
1 )t+(ρMB

2 −ρMS
2 )X1

g+αM
1 (pjt−p)+αM

2 (X2
jt−X2)

C.0.2 Data

For this exercise, I randomly choose 18 games to do the estimation. Following Table
C1 and Figure C1-C2 summarize relative prices of the subsample data.
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Table C.1: Relative Start Prices and Relative Transaction Prices of Subsample
relative price mechanism Obs Mean Std. Dev. Min Max

total 3,963 0.9223001 0.7214884 0.0000269 3.69318
start price/face value auction 1,616 0.6777 0.5184904 0.0000269 2.678393

posted price 2,347 1.090727 0.790222 0.004717 3.693182
total 3,963 1.208957 0.6192162 0.1090909 4

transaction price/face value auction 1,616 1.002251 0.569532 0.1475 3.125
posted price 2,347 1.351282 0.6120078 0.1090909 4

Figure C.1: Start Price/Face Value over Time of Subsample

C.0.3 Results

Results for demand part are shown in Table C2. Notice I haven’t use IV in these
practices. Figure C3 depicts the predicted arrival rates. Figure C4 shows the average
value of buyers of different selling mechanisms. From Figure C5, we see the estimation
results can capture the dynamics of transaction rates well.

With the estimation results from demand side, I continue estimate the parameter
in the supply side. Here I restrict γ0

2 = 0.
Without last period change:outside option=0.6013*facevalue, β2 = 0.99�
With last period change: outside option=0.6029*facevalue, β2 = 0.9.
Further, I divide sellers to be experienced and inexperienced by start price/face

value smaller than 2 or not with last period change. The estimation results are as
follows

Experienced: outside option=3.8344*facevalue, β2 = 0.99.
Inexperienced: outside option=3.8344*facevalue, β2 = 0.99.
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Figure C.2: Transaction Price/Face Value over Time of Subsample

Table C.2: With Expanding the Data According to Their Number of Tickets
no change of last period change last period
Auction Posted Price Auction Posted Price

constant 0.9440 0.4231 1.0108 0.1162
opponent -0.0583 -0.0604 -0.0592 -0.0567
weekdays -0.5431 -0.5876 -0.5474 -0.5932

Arrival time left -0.1632 -0.1244 -0.1613 -0.1253
titlsection 0.0291 0.0021 0.0024 0.0091
titlrow -0.0661 -0.0085 -0.0666 -0.0111
log(price) 0.0003 -0.3087 -0.0045 -0.3671
shipping 0.0520 -0.0319 0.0410 -0.0368
correction No Yes No Yes
face value 0.0156 0.0156 0.0162 0.0162
section 0.0073 0.0073 -0.0024 -0.0024
row -0.0167 -0.0167 -0.0038 -0.0038

Value prob
Distribution σb 0.6970 0.8592 0.7758 0.7426

µ 2.8313 2.7747 2.6813 2.9862
β

Similar to the original model, this estimation results can predict the level of prices,
dynamics of prices and auction shares well. However, the auction share is higher
than the observed market auction share and the price dispersion is much less than
the observed one.
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Figure C.3: Estimated Arrival Rates without Last Period Change in One-step Model

Figure C.4: Estimated Value Distribution Without Last Period Change in One-step Model

C.0.4 Counterfactual Analysis

Finally, I also do three parts counterfactual analysis for the new model. Results are
shown in Table C3-C5.
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Figure C.5: Estimated Transaction Rates without Last Period Change in One-step Model

Figure C.6: Auction Share over Time in One-step Model

Table C.3: Summary of Counterfactual Analysis (1)-(3) without Last Period Change
real market estimated value distribution β1 β2

mean auction share 0.2719 0.2969 0.281 0.2061 0.3265
mean prices 70.5098 74.941 51.3441 67.3479 28.7062
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Figure C.7: Start Price over Time in One-step Model

Table C.4: Summary of Counterfactual Analysis (4)-(6) with Last Period Change
real market estimated price sensitive obfuscation commission fee

mean auction share 0.2719 0.2969 0.295 0.2932 0.3365
mean prices 70.5098 74.941 69.9654 74.9357 77.4787

Table C.5: Only with Posted Price with Last Period Change
real market estimated auctions posted prices only with posted prices

mean prices 70.5098 74.941 71.2628
std prices 70.0054 18.8465 18.1884
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